
MTH 508/608: Introduction to Differentiable

Manifolds and Lie Groups
Assignment 2: Vector fields on manifolds

1 Practice problems

1. Show that the relation ∼ in Definition 2.1 (i) of the Lesson Plan is
indeed an equivalence relation and that C∞(p) forms an algebra over
R.

2. Establish (or study the proofs of) the following assertions in the Lesson
Plan: Theorem 2.1 (iv)(a), 2.1 (xii)(a), Theorem 2.3 (xii), Theorem 2.3
(xiii), Lemma 2.4 (xi), Corollary 2.4 (xii), Theorem 2.5 (iv), Corollary
2.5 (v), Corollary 2.6 (v), Example 2.6 (vi), Theorem 2.6 (viii), Theo-
rem 2.7 (x), Corollary 2.7 (xii), Theorem 2.7 (xiv), Corollary 2.8 (vii),
Theorem 2.8 (viii), Theorem 2.9 (iii), Lemma 2.9 (iv), and Theorem
2.9 (v).

3. Read carefully through Example 1.10 worked out in pages 110-111 of
Boothby.

(a) Using the notation in this example, show that for any α, β ∈ R,
there exists a parametrized curve on M through p whose velocity
vector is exactly α(Xu)0 + β(Xv)0.

(b) Let the surface in the example be parametrized in the form z =
h(x, y) with z0 = h(x0, y0). Show that under suitable parametriza-
tion, the tangent plane T(x0,y0,z0)(M) consists of all vectors from
(x0, y0, z0) to (x, y, z) satisfying(

∂h

∂x

)
0

(x− x0) +

(
∂h

∂y

)
0

(y − y0)− (z − z0) = 0.

4. Let M be a smooth n-manifold and let T (M) = ∪p∈mTp(M) be the
tangent bundle of M . There is a natural projection map π : T (M) →
M that sends each vector in Tp(M) to the point that which it is tan-
gent.
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(a) For any coordinate neighborhood (U,φ) of M , define

φ̃ : π−1(U) → R2n

by

φ̃

(
vi

(
∂

∂xi

)
p

)
= (x1(p), . . . , xn(p), v1, . . . , vn),

where the xi are the coordinate functions of φ. Using φ̃ establish
that TM has a smooth structure that makes it a 2n dimensional
smooth manifold.

(b) If F : N → M is C∞, show that F∗ : T (N) → T (M) is C∞ and
π ◦ F∗ = F ◦ π.

5. Let M be a smooth manifold. Show the following statements are
equivalent.

(a) X is a C∞ vector field on M .

(b) Whenever f is a C∞ function in a open set Wf ⊂ M , Xf defined
by (Xf)p = Xpf is C∞ on Wf .

(c) X is a continuous map X : M → TM such that π ◦X = idM .

6. Show that if F : N → M is smooth and X be a C∞ vector field on
N , then Y = F∗(X), if it exists, is uniquely determined if and only if
F (N) is dense in M .

7. Let : M̃ → M be smooth covering and Y a smooth vector field on M .
Show that there exists a unique smooth vector field X on M̃ such that
F∗(X) = Y .

8. Determine the infinitesimal generator Xθ for the following actions θ.

(a) θ : R× R2 → R2 defined by

θ(t, (x, y)) = (−x cos(t) + y sin(t),−x sin(t) + y cos(t)).

(b) θ : R× R2 → R2 defined by θ(t, (x, y)) = (−xe2t, ye−3t).

(c) θ : R×GL(2,R) → GL(2,R) defined by

θ(t, A) =

(
1 t
0 1

)
·A.

9. Determine the one-parameter action θX associated with the following
actions vector fields X.

(a) The vector field X = x ∂
∂x + y ∂

∂y on R2.
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(b) The vector field X = y ∂
∂x − x ∂

∂y on R2.

(c) The vector field X = x2 ∂
∂x on R.

10. Let X and Y be smooth vector fields on N and M , respectively, and
let F : N → M be a smooth mapping. Then show that F∗(X) = Y
if and only if F ◦ θXt (p) = θYt ◦ F (p) for all (t, p) where both sides are
well-defined.

11. Given p ∈ M , if (α(p), β(p)) is bounded for a C∞ vector field X on
M , then show that t → θ(t, p) is an imbedding.

12. Show that a non-trivial one-parameter subgroup H of a Lie group G
is either an isomorphic image of S1 or R.

13. Show that for a Lie group G, the map µ : G → G defined by µ(g) =
g−1, takes left-invariant vector fields to right-invariant vector fields.

14. Consider A ∈ GL(n,R) and X ∈ Mn(R).

(a) Show that AeXA−1 = eAXA−1
.

(b) Using (a), show that det(eX) = etr(X)

(c) Determine all matricesA such that {etA : t ∈ R} is a one-parameter
subgroup of SL(n,R).

15. Consider the set X(M) of C∞ vector fields on M .

(a) Show that X(M) is an infinite-dimensional vector space over R
(b) Show that X(M) is a module over C∞(M).

(c) Show that X(M) locally finitely generated over C∞(M), that is,
each p ∈ M has a neighborhood V on which there is a finite set
of vector fields that generate X(M) as a C∞(V ) module.

16. Show that for X,Y ∈ X(M) and f, g ∈ C∞(M), we have

[fX, gY ] = fg[X,Y ] + f(Xg)Y − g(Y f)X.

17. For G = GL(n,R), consider the Lie algebra g. Consider the map
µ : g → Mn(R) that assigns to each X ∈ g the matrix A = (aij) of
components of Xe. Show that µ is an algebra isomorphism, that is,

µ[X,Y ] = µ(X)µ(Y )− µ(Y )µ(X).

18. If F : M → N is a diffeomorphism and X,Y ∈ X(M), then show that

F∗(LXY ) = LF∗(X)F∗(Y ).
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19. If f ∈ C∞(M), X,Y ∈ X(M), and LXf = Xf , then show that

LX(fY ) = (LXf)Y + f(LXY ).

20. A vector field X on M is said to belong to a distribution ∆ on M if
for each p ∈ M , we have Xp ∈ ∆p. Show that a C∞ distribution ∆ on
M is involutive if and only if for every pair of C∞ vector fields X,Y
on M that belong to ∆, we have [X,Y ] belongs to ∆.

21. Let N be a maximal integral manifold of a distribution ∆ on M . Show
that if N is closed, then N is a regular submanifold of M .

22. Let N ⊂ M be a submanifold, and let X,Y ∈ X(M) be such that
if p ∈ N , then X,Yp ∈ Tp(N). Then show that p ∈ N implies that
[X,Y ]p ∈ Tp(N).

23. Let G be a Lie group and H a closed Lie subgroup such that H ◁G.
Then show that G/H is Lie group and G → G/H is a Lie group
homomorphism.

24. Let F : G1 → G2 be a Lie group homomorphism. Show that ker F is
a closed Lie subgroup of G1.

25. Show that every countable subset of Rk has an isolated point.

26. Let H be a Lie group and let H0 be the component of e.

(a) Show that H has at most a countable countable number of con-
nected components that are all open and closed and diffeomorphic
to H0.

(b) Show that H0 ◁H and that H/H0 is a discrete Lie group.

2 Problems for submission

• Homework 3 (Due 30/10/24): Establish the assertions marked in
red in the Midterm solutions.

• Homework 4 (Due 14/11/24): Solve problems 3, 5, 12, 17, and 26
from the practice problems above.
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